Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
2.
Biochimie ; 183: 89-99, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33309754

RESUMO

Despite biochemical and genetic testing being the golden standards for identification of proximal urea cycle disorders (UCDs), genotype-phenotype correlations are often unclear. Co-occurring partial defects affecting more than one gene have not been demonstrated so far in proximal UCDs. Here, we analyzed the mutational spectrum of 557 suspected proximal UCD individuals. We probed oligomerizing forms of NAGS, CPS1 and OTC, and evaluated the surface exposure of residues mutated in heterozygously affected individuals. BN-PAGE and gel-filtration chromatography were employed to discover protein-protein interactions within recombinant enzymes. From a total of 281 confirmed patients, only 15 were identified as "heterozygous-only" candidates (i.e. single defective allele). Within these cases, the only missense variants to potentially qualify as dominant negative triggers were CPS1 p.Gly401Arg and NAGS p.Thr181Ala and p.Tyr512Cys, as assessed by residue oligomerization capacity and surface exposure. However, all three candidates seem to participate in critical intramolecular functions, thus, unlikely to facilitate protein-protein interactions. This interpretation is further supported by BN-PAGE and gel-filtration analyses revealing no multiprotein proximal urea cycle complex formation. Collectively, genetic analysis, structural considerations and in vitro experiments point against a prominent role of dominant negative effects in human proximal UCDs.


Assuntos
Aminoácido N-Acetiltransferase , Carbamoil-Fosfato Sintase (Amônia) , Genes Dominantes , Mutação de Sentido Incorreto , Ornitina Carbamoiltransferase , Distúrbios Congênitos do Ciclo da Ureia , Substituição de Aminoácidos , Aminoácido N-Acetiltransferase/química , Aminoácido N-Acetiltransferase/genética , Aminoácido N-Acetiltransferase/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato Sintase (Amônia)/genética , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Feminino , Heterozigoto , Homozigoto , Humanos , Masculino , Ornitina Carbamoiltransferase/química , Ornitina Carbamoiltransferase/genética , Ornitina Carbamoiltransferase/metabolismo , Domínios Proteicos , Distúrbios Congênitos do Ciclo da Ureia/enzimologia , Distúrbios Congênitos do Ciclo da Ureia/genética
3.
J Inherit Metab Dis ; 42(6): 1077-1087, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30907007

RESUMO

The urea cycle disorder (UCD) argininosuccinate lyase (ASL) deficiency, caused by a defective ASL enzyme, exhibits a wide range of phenotypes, from life-threatening neonatal hyperammonemia to asymptomatic patients, with only the biochemical marker argininosuccinic acid (ASA) elevated in body fluids. Remarkably, even without ever suffering from hyperammonemia, patients often develop severe cognitive impairment and seizures. The goal of this study was to understand the effect on the known toxic metabolite ASA and the assumed toxic metabolite guanidinosuccinic acid (GSA) on developing brain cells, and to evaluate the potential role of creatine (Cr) supplementation, as it was described protective for brain cells exposed to ammonia. We used an in vitro model, in which we exposed three-dimensional (3D) organotypic rat brain cell cultures in aggregates to different combinations of the metabolites of interest at two time points (representing two different developmental stages). After harvest and cryopreservation of the cell cultures, the samples were analyzed mainly by metabolite analysis, immunohistochemistry, and western blotting. ASA and GSA were found toxic for astrocytes and neurons. This toxicity could be reverted in vitro by Cr. As well, an antiapoptotic effect of ASA was revealed, which could contribute to the neurotoxicity in ASL deficiency. Further studies in human ASL deficiency will be required to understand the biochemical situation in the brain of affected patients, and to investigate the impact of high or low arginine doses on brain Cr availability. In addition, clinical trials to evaluate the beneficial effect of Cr supplementation in ASL deficiency would be valuable.


Assuntos
Ácido Argininossuccínico/toxicidade , Acidúria Argininossuccínica/patologia , Acidúria Argininossuccínica/prevenção & controle , Encéfalo/patologia , Creatina/farmacologia , Síndromes Neurotóxicas/patologia , Animais , Acidúria Argininossuccínica/genética , Acidúria Argininossuccínica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células Cultivadas , Humanos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/metabolismo , Técnicas de Cultura de Órgãos/métodos , Ratos , Alicerces Teciduais/química
4.
J Inherit Metab Dis ; 42(6): 1064-1076, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30714172

RESUMO

The most common ureagenesis defect is X-linked ornithine transcarbamylase (OTC) deficiency which is a main target for novel therapeutic interventions. The spf ash mouse model carries a variant (c.386G>A, p.Arg129His) that is also found in patients. Male spf ash mice have a mild biochemical phenotype with low OTC activity (5%-10% of wild-type), resulting in elevated urinary orotic acid but no hyperammonemia. We recently established a dried blood spot method for in vivo quantification of ureagenesis by Gas chromatography-mass spectrometry (GC-MS) using stable isotopes. Here, we applied this assay to wild-type and spf ash mice to assess ureagenesis at different ages. Unexpectedly, we found an age-dependency with a higher capacity for ammonia detoxification in young mice after weaning. A parallel pattern was observed for carbamoylphosphate synthetase 1 and OTC enzyme expression and activities, which may act as pacemaker of this ammonia detoxification pathway. Moreover, high ureagenesis in younger mice was accompanied by elevated periportal expression of hepatic glutamine synthetase, another main enzyme required for ammonia detoxification. These observations led us to perform a more extensive analysis of the spf ash mouse in comparison to the wild-type, including characterization of the corresponding metabolites, enzyme activities in the liver and plasma and the gut microbiota. In conclusion, the comprehensive enzymatic and metabolic analysis of ureagenesis performed in the presented depth was only possible in animals. Our findings suggest such analyses being essential when using the mouse as a model and revealed age-dependent activity of ammonia detoxification.


Assuntos
Envelhecimento/fisiologia , Amônia/metabolismo , Doença da Deficiência de Ornitina Carbomoiltransferase/metabolismo , Doença da Deficiência de Ornitina Carbomoiltransferase/patologia , Ornitina Carbamoiltransferase/genética , Ureia/metabolismo , Fatores Etários , Animais , Modelos Animais de Doenças , Humanos , Hiperamonemia/genética , Hiperamonemia/metabolismo , Hiperamonemia/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Transgênicos , Doença da Deficiência de Ornitina Carbomoiltransferase/genética
5.
J Inherit Metab Dis ; 42(6): 1147-1161, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30723942

RESUMO

The first patients affected by argininosuccinic aciduria (ASA) were reported 60 years ago. The clinical presentation was initially described as similar to other urea cycle defects, but increasing evidence has shown overtime an atypical systemic phenotype with a paradoxical observation, that is, a higher rate of neurological complications contrasting with a lower rate of hyperammonaemic episodes. The disappointing long-term clinical outcomes of many of the patients have challenged the current standard of care and therapeutic strategy, which aims to normalize plasma ammonia and arginine levels. Interrogations have raised about the benefit of newborn screening or liver transplantation on the neurological phenotype. Over the last decade, novel discoveries enabled by the generation of new transgenic argininosuccinate lyase (ASL)-deficient mouse models have been achieved, such as, a better understanding of ASL and its close interaction with nitric oxide metabolism, ASL physiological role outside the liver, and the pathophysiological role of oxidative/nitrosative stress or excessive arginine treatment. Here, we present a collaborative review, which highlights these recent discoveries and novel emerging concepts about ASL role in human physiology, ASA clinical phenotype and geographic prevalence, limits of current standard of care and newborn screening, pathophysiology of the disease, and emerging novel therapies. We propose recommendations for monitoring of ASA patients. Ongoing research aims to better understand the underlying pathogenic mechanisms of the systemic disease to design novel therapies.


Assuntos
Acidúria Argininossuccínica , Animais , Argininossuccinato Liase/genética , Acidúria Argininossuccínica/diagnóstico , Acidúria Argininossuccínica/genética , Acidúria Argininossuccínica/patologia , Acidúria Argininossuccínica/terapia , Humanos , Hiperamonemia/diagnóstico , Hiperamonemia/genética , Hiperamonemia/terapia , Recém-Nascido , Fígado/diagnóstico por imagem , Fígado/patologia , Fígado/cirurgia , Transplante de Fígado , Camundongos , Camundongos Transgênicos , Triagem Neonatal/métodos , Triagem Neonatal/tendências , Estresse Oxidativo/fisiologia , Fenótipo
6.
Hum Mutat ; 39(8): 1029-1050, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29726057

RESUMO

The urea cycle disorder argininemia is caused by a defective arginase 1 (ARG1) enzyme resulting from mutations in the ARG1 gene. Patients generally develop hyperargininemia, spastic paraparesis, progressive neurological and intellectual impairment, and persistent growth retardation. Interestingly, in contrast to other urea cycle disorders, hyperammonemia is rare. We report here 66 mutations (12 of which are novel), including 30 missense mutations, seven nonsense, 10 splicing, 15 deletions, two duplications, one small insertion, and one translation initiation codon mutation. For the most common mutations (p.Thr134Ile, p.Gly235Arg and p.Arg21*), which cluster geographically in Brazil, China, or Turkey, a structural rationalization of their effect has been included. In order to gain more knowledge on the disease, we have collected clinical and biochemical information of 112 patients, including the patients' genetic background and ethnic origin. We have listed as well the missense variants with unknown relevance. For all missense variants (of both known and unknown relevance), the conservation, severity prediction, and ExAc scores have been included. Lastly, we review ARG1 regulation, animal models, diagnostic strategies, newborn screening, prenatal testing, and treatment options.


Assuntos
Arginase/genética , Mutação/genética , Brasil , China , Códon sem Sentido/genética , Humanos , Mutação de Sentido Incorreto/genética , Turquia
7.
J Inherit Metab Dis ; 41(4): 689-698, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29520739

RESUMO

Neonatal onset hyperammonemia in patients with urea cycle disorders (UCDs) is still associated with high morbidity and mortality. Current protocols consistently recommend emergency medical and dietary management. In case of increasing or persistent hyperammonemia, with continuous or progressive neurological signs, dialysis is performed, mostly as ultima ratio. It is presently unknown whether the currently defined ammonia threshold (e.g., at 500 µmol/L) to start dialysis is useful to improve clinical outcome. A systematic review of clinical and biochemical data from published neonatal onset UCD patients was performed to identify factors determining clinical outcome and to investigate in which clinical and biochemical setting dialysis was most effective. A total of 202 patients (118 proximal and 84 distal UCDs) described in 90 case reports or case series were included according to predefined inclusion/exclusion criteria. Median age at onset was three days and mean ammonia that triggered start of dialysis was 1199 µmol/L. Seventy-one percent of all patients received any form of dialysis. Total mortality was 25% and only 20% of all patients had a "normal" outcome. In general, patients with higher ammonia levels were more likely to receive dialysis, but this had for most patients no influence on outcome. In conclusion, in severe neonatal onset hyperammonemia, the current practice of dialysis, which effectively clears ammonia, had no impact on outcome. It may be essential for improving outcome to initiate all available treatment options, including dialysis, as early as possible.


Assuntos
Amônia/sangue , Hiperamonemia/complicações , Diálise Renal , Distúrbios Congênitos do Ciclo da Ureia/terapia , Idade de Início , Humanos , Recém-Nascido , Resultado do Tratamento , Distúrbios Congênitos do Ciclo da Ureia/sangue
8.
Expert Opin Ther Targets ; 21(4): 391-399, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28281899

RESUMO

INTRODUCTION: Carbamoyl phosphate synthetase 1 (CPS1) deficiency (CPS1D) is a rare autosomal recessive urea cycle disorder (UCD), which can lead to life-threatening hyperammonemia. Unless promptly treated, it can result in encephalopathy, coma and death, or intellectual disability in surviving patients. Over recent decades, therapies for CPS1D have barely improved leaving the management of these patients largely unchanged. Additionally, in many cases, current management (protein-restriction and supplementation with citrulline and/or arginine and ammonia scavengers) is insufficient for achieving metabolic stability, highlighting the importance of developing alternative therapeutic approaches. Areas covered: After describing UCDs and CPS1D, we give an overview of the structure- function of CPS1. We then describe current management and potential novel treatments including N-carbamoyl-L-glutamate (NCG), pharmacological chaperones, and gene therapy to treat hyperammonemia. Expert opinion: Probably, the first novel CPS1D therapies to reach the clinics will be the already commercial substance NCG, which is the standard treatment for N-acetylglutamate synthase deficiency and has been proven to rescue specific CPS1D mutations. Pharmacological chaperones and gene therapy are under development too, but these two technologies still have key challenges to be overcome. In addition, current experimental therapies will hopefully add further treatment options.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Doença da Deficiência da Carbamoil-Fosfato Sintase I/terapia , Glutamatos/uso terapêutico , Animais , Carbamoil-Fosfato Sintase (Amônia)/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/fisiopatologia , Terapia Genética/métodos , Humanos , Chaperonas Moleculares/farmacologia , Mutação , Distúrbios Congênitos do Ciclo da Ureia/fisiopatologia , Distúrbios Congênitos do Ciclo da Ureia/terapia
9.
Hum Mutat ; 38(5): 471-484, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28111830

RESUMO

Citrullinemia type 1 is an autosomal recessive urea cycle disorder caused by defects in the argininosuccinate synthetase (ASS) enzyme due to mutations in ASS1 gene. An impairment of ASS function can lead to a wide spectrum of phenotypes, from life-threatening neonatal hyperammonemia to a later onset with mild symptoms, and even some asymptomatic patients exhibiting an only biochemical phenotype. The disease is panethnic. In this update, we report 137 mutations (64 of which are novel), consisting of 89 missense mutations, 19 nonsense mutations, 17 mutations that affect splicing, and 12 deletions. The change p.Gly390Arg is by far the most common mutation and is widely spread throughout the world. Other frequent mutations (p.Arg157His, p.Trp179Arg, p.Val263Met, p.Arg304Trp, p.Gly324Ser, p.Gly362Val, and p.Arg363Trp), each found in at least 12 independent families, are mainly carried by patients from the Indian subcontinent, Turkey, Germany, and Japan. To better understand the disease, we collected clinical data of >360 patients, including all published information available. This information is related to the patients' genetic background, the conservation of the mutated residues and a structural rationalization of the effect of the most frequent mutations. In addition, we review ASS regulation, animal models, diagnostic strategies, newborn screening, and treatment options.


Assuntos
Argininossuccinato Sintase/genética , Citrulinemia/diagnóstico , Citrulinemia/genética , Mutação , Alelos , Sequência de Aminoácidos , Animais , Argininossuccinato Sintase/química , Argininossuccinato Sintase/metabolismo , Citrulinemia/epidemiologia , Citrulinemia/terapia , Modelos Animais de Doenças , Ativação Enzimática , Estudos de Associação Genética , Genótipo , Geografia Médica , Humanos , Modelos Moleculares , Fenótipo , Matrizes de Pontuação de Posição Específica , Diagnóstico Pré-Natal , Conformação Proteica , Índice de Gravidade de Doença , Relação Estrutura-Atividade
10.
Biology (Basel) ; 5(4)2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27775558

RESUMO

Glutamine synthetase (GS) is a cytosolic enzyme that produces glutamine, the most abundant free amino acid in the human body. Glutamine is a major substrate for various metabolic pathways, and is thus an important factor for the functioning of many organs; therefore, deficiency of glutamine due to a defect in GS is incompatible with normal life. Mutations in the human GLUL gene (encoding for GS) can cause an ultra-rare recessive inborn error of metabolism-congenital glutamine synthetase deficiency. This disease was reported until now in only three unrelated patients, all of whom suffered from neonatal onset severe epileptic encephalopathy. The hallmark of GS deficiency in these patients was decreased levels of glutamine in body fluids, associated with chronic hyperammonemia. This review aims at recapitulating the clinical history of the three known patients with congenital GS deficiency and summarizes the findings from studies done along with the work-up of these patients. It is the aim of this paper to convince the reader that (i) this disorder is possibly underdiagnosed, since decreased concentrations of metabolites do not receive the attention they deserve; and (ii) early detection of GS deficiency may help to improve the outcome of patients who could be treated early with metabolites that are lacking in this condition.

11.
J Med Genet ; 53(10): 710-9, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27287393

RESUMO

BACKGROUND: Citrullinemia type 1 is an autosomal-recessive urea cycle disorder caused by mutations in the ASS1 gene and characterised by increased plasma citrulline concentrations. Of the ∼90 argininosuccinate synthetase (ASS) missense mutations reported, 21 map near the substrate (aspartate or citrulline) binding site, and thus are potential kinetic mutations whose decreased activities could be amenable to substrate supplementation. This article aims at characterising these 21 ASS mutations to prove their disease-causing role and to test substrate supplementation as a novel therapeutic approach. METHODS: We used an Escherichia coli expression system to study all potentially kinetic ASS mutations. All mutant enzymes were nickel-affinity purified, their activity and kinetic parameters were measured using tandem mass spectrometry and their thermal stability using differential scanning fluorimetry. Structural rationalisation of the effects of these mutations was performed. RESULTS: Of the characterised mutants, 13 were totally inactive while 8 exhibited decreased affinity for aspartate and citrulline. The activity of these eight kinetic mutations could be rescued to ∼10-99% of the wild-type using high l-aspartate concentrations. CONCLUSIONS: Substrate supplementation raised in vitro the activity of eight citrullinemia type 1 mutations with reduced affinity for aspartate. As a direct translation of these results to the clinics, we propose to further evaluate the use of oxaloacetate, a nitrogen-free aspartate precursor and already available medical food (anti-ageing and brain stimulating, not considered as a drug by the US Food and Drug Administration), in patients with citrullinemia type 1 with decreased aspartate affinity. Although only patients with kinetic mutations would benefit, oxaloacetate could offer a safe novel treatment.


Assuntos
Argininossuccinato Sintase/genética , Ácido Aspártico/uso terapêutico , Citrulinemia/enzimologia , Argininossuccinato Sintase/metabolismo , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacologia , Domínio Catalítico/genética , Citrulina/metabolismo , Citrulinemia/tratamento farmacológico , Citrulinemia/genética , Humanos , Cinética , Mutação de Sentido Incorreto
12.
Genet Med ; 18(10): 991-1000, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26913920

RESUMO

PURPOSE: Four mitochondrial metabolic liver enzymes require bicarbonate, which is provided by the carbonic anhydrase isoforms VA (CAVA) and VB (CAVB). Defective hepatic bicarbonate production leads to a unique combination of biochemical findings: hyperammonemia, elevated lactate and ketone bodies, metabolic acidosis, hypoglycemia, and excretion of carboxylase substrates. This study aimed to test for CAVA or CAVB deficiencies in a group of 96 patients with early-onset hyperammonemia and to prove the disease-causing role of the CAVA variants found. METHODS: We performed CA5A and CA5B sequencing in the described cohort and developed an expression system using insect cells, which enabled the characterization of wild-type CAVA, clinical mutations, and three variants that affect functional residues. RESULTS: In 10 of 96 patients, mutations in CA5A were identified on both alleles but none in CA5B. Exhibiting decreased enzyme activity or thermal stability, all CAVA mutations were proven to cause disease, whereas the three variants showed no relevant effect. CONCLUSION: CAVA deficiency is a differential diagnosis of early-onset and life-threatening metabolic crisis, with hyperammonemia, hyperlactatemia, and ketonuria as apparently obligate signs. It seems to be more common than other rare metabolic diseases, and early identification may allow specific treatment of hyperammonemia and ultimately prevent neurologic sequelae.Genet Med 18 10, 991-1000.


Assuntos
Acidose/genética , Anidrases Carbônicas/genética , Hiperamonemia/genética , Fígado/metabolismo , Acidose/metabolismo , Acidose/patologia , Adolescente , Bicarbonatos/metabolismo , Anidrases Carbônicas/deficiência , Anidrases Carbônicas/metabolismo , Criança , Pré-Escolar , Humanos , Hiperamonemia/metabolismo , Hiperamonemia/patologia , Hipoglicemia/genética , Hipoglicemia/metabolismo , Hipoglicemia/patologia , Lactente , Recém-Nascido , Ácido Láctico/metabolismo , Fígado/enzimologia , Fígado/patologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mutação , Isoformas de Proteínas
13.
Sci Rep ; 5: 16950, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26592762

RESUMO

Human carbamoyl phosphate synthetase (CPS1), a 1500-residue multidomain enzyme, catalyzes the first step of ammonia detoxification to urea requiring N-acetyl-L-glutamate (NAG) as essential activator to prevent ammonia/amino acids depletion. Here we present the crystal structures of CPS1 in the absence and in the presence of NAG, clarifying the on/off-switching of the urea cycle by NAG. By binding at the C-terminal domain of CPS1, NAG triggers long-range conformational changes affecting the two distant phosphorylation domains. These changes, concerted with the binding of nucleotides, result in a dramatic remodeling that stabilizes the catalytically competent conformation and the building of the ~35 Å-long tunnel that allows migration of the carbamate intermediate from its site of formation to the second phosphorylation site, where carbamoyl phosphate is produced. These structures allow rationalizing the effects of mutations found in patients with CPS1 deficiency (presenting hyperammonemia, mental retardation and even death), as exemplified here for some mutations.


Assuntos
Amônia/química , Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato/química , Glutamatos/química , Ureia/química , Motivos de Aminoácidos , Amônia/metabolismo , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/genética , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Doença da Deficiência da Carbamoil-Fosfato Sintase I/enzimologia , Doença da Deficiência da Carbamoil-Fosfato Sintase I/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/patologia , Carbamoil-Fosfato/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Expressão Gênica , Glutamatos/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fosforilação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Especificidade por Substrato , Ureia/metabolismo
14.
J Genet Genomics ; 42(5): 249-60, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-26059772

RESUMO

Carbamoyl phosphate synthetase 1 (CPS1) deficiency (CPS1D) is an inborn error of the urea cycle having autosomal (2q34) recessive inheritance that can cause hyperammonemia and neonatal death or mental retardation. We analyzed the effects on CPS1 activity, kinetic parameters and enzyme stability of missense mutations reported in patients with CPS1 deficiency that map in the 20-kDa C-terminal domain of the enzyme. This domain turns on or off the enzyme depending on whether the essential allosteric activator of CPS1, N-acetyl-L-glutamate (NAG), is bound or is not bound to it. To carry out the present studies, we exploited a novel system that allows the expression in vitro and the purification of human CPS1, thus permitting site-directed mutagenesis. These studies have clarified disease causation by individual mutations, identifying functionally important residues, and revealing that a number of mutations decrease the affinity of the enzyme for NAG. Patients with NAG affinity-decreasing mutations might benefit from NAG site saturation therapy with N-carbamyl-L-glutamate (a registered drug, the analog of NAG). Our results, together with additional present and prior site-directed mutagenesis data for other residues mapping in this domain, suggest an NAG-triggered conformational change in the ß4-α4 loop of the C-terminal domain of this enzyme. This change might be an early event in the NAG activation process. Molecular dynamics simulations that were restrained according to the observed effects of the mutations are consistent with this hypothesis, providing further backing for this structurally plausible signaling mechanism by which NAG could trigger urea cycle activation via CPS1.


Assuntos
Amônia/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Doença da Deficiência da Carbamoil-Fosfato Sintase I/metabolismo , Ureia/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/enzimologia , Doença da Deficiência da Carbamoil-Fosfato Sintase I/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/patologia , Estabilidade Enzimática , Glutamatos/metabolismo , Humanos , Cinética , Simulação de Dinâmica Molecular , Mutação , Estrutura Terciária de Proteína , Transdução de Sinais
15.
Mol Genet Metab ; 113(4): 267-73, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25410056

RESUMO

Carbamoyl phosphate synthetase 1 (CPS1) deficiency due to CPS1 mutations is a rare autosomal-recessive urea cycle disorder causing hyperammonemia that can lead to death or severe neurological impairment. CPS1 catalyzes carbamoyl phosphate formation from ammonia, bicarbonate and two molecules of ATP, and requires the allosteric activator N-acetyl-L-glutamate. Clinical mutations occur in the entire CPS1 coding region, but mainly in single families, with little recurrence. We characterized here the only currently known recurrent CPS1 mutation, p.Val1013del, found in eleven unrelated patients of Turkish descent using recombinant His-tagged wild type or mutant CPS1 expressed in baculovirus/insect cell system. The global CPS1 reaction and the ATPase and ATP synthesis partial reactions that reflect, respectively, the bicarbonate and the carbamate phosphorylation steps, were assayed. We found that CPS1 wild type and V1013del mutant showed comparable expression levels and purity but the mutant CPS1 exhibited no significant residual activities. In the CPS1 structural model, V1013 belongs to a highly hydrophobic ß-strand at the middle of the central ß-sheet of the A subdomain of the carbamate phosphorylation domain and is close to the predicted carbamate tunnel that links both phosphorylation sites. Haplotype studies suggested that p.Val1013del is a founder mutation. In conclusion, the mutation p.V1013del inactivates CPS1 but does not render the enzyme grossly unstable or insoluble. Recurrence of this particular mutation in Turkish patients is likely due to a founder effect, which is consistent with the frequent consanguinity observed in the affected population.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/genética , Deleção de Sequência , Animais , Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Estabilidade Enzimática , Feminino , Efeito Fundador , Humanos , Recém-Nascido , Masculino , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão , Células Sf9 , Spodoptera , Turquia
16.
Mol Genet Metab ; 112(2): 123-32, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24813853

RESUMO

Carbamoyl phosphate synthetase 1 deficiency (CPS1D) is an inborn error of the urea cycle that is due to mutations in the CPS1 gene. In the first large repertory of mutations found in CPS1D, a small CPS1 domain of unknown function (called the UFSD) was found to host missense changes with high frequency, despite the fact that this domain does not host substrate-binding or catalytic machinery. We investigate here by in vitro expression studies using baculovirus/insect cells the reasons for the prominence of the UFSD in CPS1D, as well as the disease-causing roles and pathogenic mechanisms of the mutations affecting this domain. All but three of the 18 missense changes found thus far mapping in this domain in CPS1D patients drastically decreased the yield of pure CPS1, mainly because of decreased enzyme solubility, strongly suggesting misfolding as a major determinant of the mutations negative effects. In addition, the majority of the mutations also decreased from modestly to very drastically the specific activity of the fraction of the enzyme that remained soluble and that could be purified, apparently because they decreased V(max). Substantial although not dramatic increases in K(m) values for the substrates or for N-acetyl-L-glutamate were observed for only five mutations. Similarly, important thermal stability decreases were observed for three mutations. The results indicate a disease-causing role for all the mutations, due in most cases to the combined effects of the low enzyme level and the decreased activity. Our data strongly support the value of the present expression system for ascertaining the disease-causing potential of CPS1 mutations, provided that the CPS1 yield is monitored. The observed effects of the mutations have been rationalized on the basis of an existing structural model of CPS1. This model shows that the UFSD, which is in the middle of the 1462-residue multidomain CPS1 protein, plays a key integrating role for creating the CPS1 multidomain architecture leading us to propose here a denomination of "Integrating Domain" for this CPS1 region. The majority of these 18 mutations distort the interaction of this domain with other CPS1 domains, in many cases by causing improper folding of structural elements of the Integrating Domain that play key roles in these interactions.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato Sintase (Amônia)/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/patologia , Mutação de Sentido Incorreto , Animais , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Linhagem Celular , Estabilidade Enzimática , Glutamatos/metabolismo , Humanos , Recém-Nascido , Insetos/citologia , Insetos/genética , Insetos/metabolismo , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
17.
Hum Mutat ; 34(8): 1149-59, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23649895

RESUMO

The urea cycle disease carbamoyl-phosphate synthetase deficiency (CPS1D) has been associated with many mutations in the CPS1 gene [Häberle et al., 2011. Hum Mutat 32:579-589]. The disease-causing potential of most of these mutations is unclear. To test the mutations effects, we have developed a system for recombinant expression, mutagenesis, and purification of human carbamoyl-phosphate synthetase 1 (CPS1), a very large, complex, and fastidious enzyme. The kinetic and molecular properties of recombinant CPS1 are essentially the same as for natural human CPS1. Glycerol partially replaces the essential activator N-acetyl-l-glutamate (NAG), opening possibilities for treating CPS1D due to NAG site defects. The value of our expression system for elucidating the effects of mutations is demonstrated with eight clinical CPS1 mutations. Five of these mutations decreased enzyme stability, two mutations drastically hampered catalysis, and one vastly impaired NAG activation. In contrast, the polymorphisms p.Thr344Ala and p.Gly1376Ser had no detectable effects. Site-limited proteolysis proved the correctness of the working model for the human CPS1 domain architecture generally used for rationalizing the mutations effects. NAG and its analogue and orphan drug N-carbamoyl-l-glutamate, protected human CPS1 against proteolytic and thermal inactivation in the presence of MgATP, raising hopes of treating CPS1D by chemical chaperoning with N-carbamoyl-l-glutamate.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato Sintase (Amônia)/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/genética , Mutação de Sentido Incorreto , Animais , Carbamoil-Fosfato Sintase (Amônia)/deficiência , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Doença da Deficiência da Carbamoil-Fosfato Sintase I/etiologia , Doença da Deficiência da Carbamoil-Fosfato Sintase I/patologia , Humanos , Mutagênese , Polimorfismo Genético , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
18.
Endocrinology ; 148(3): 924-31, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17082258

RESUMO

The objective of this work was to characterize the adaptation of cardiac metabolism to a lipid overload in a model of diet-induced obesity (DIO) in mice. After 8 wk dietary treatment, mice receiving a high-fat diet exhibited an increase in the amount of adipose tissue, accompanied by a surge in plasma leptin concentration (from 5.4-16.0 ng/ml). This was associated with: 1) an induction of uncoupling protein-2 (120%), 2) an increase in the phosphorylated form of AMP-activated protein kinase (120%), and 3) a reduction in lactate concentration and lactate dehydrogenase activity in myocardial tissue (40%). Because DIO induces leptin resistance, we analyzed leptin receptor functionality by measuring phospho-signal transducer and activator of transcription 3 in response to acute leptin (1 mg/kg). We observed that leptin receptor signaling remained unaltered within the heart but was fully impaired within the hypothalamus. Taken together, these data show that during DIO development, there is a metabolic shift in the heart aimed at increasing fatty acid oxidation to the detriment of carbohydrates. This effect seems to be leptin-dependent, suggesting that the increased adiposity observed during the onset of obesity might contribute to impairing ectopic lipidic deposition in the heart.


Assuntos
Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Complexos Multienzimáticos/metabolismo , Miocárdio/metabolismo , Obesidade/metabolismo , Fosfotransferases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Distribuição da Gordura Corporal , Peso Corporal , Dieta/efeitos adversos , Dieta Aterogênica , L-Lactato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Miocárdio/química , Miocárdio/enzimologia , Obesidade/etiologia , Fosforilação , Fator de Transcrição STAT3/metabolismo , Triglicerídeos/análise , Proteína Desacopladora 2
19.
Neurosci Lett ; 412(2): 163-7, 2007 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-17123717

RESUMO

The alpha(2)-adrenoceptor antagonist yohimbine is known to oppose to several pharmacological effects of opioid drugs, but the consequences and the mechanisms involved remain to be clearly established. In the present study we have checked the effects of yohimbine on morphine-induced alterations of the expression of key proteins (glial fibrillary acidic protein, GFAP) and genes (alpha(2)-adrenoceptors) in rat brain areas known to be relevant in opioid dependence, addiction and individual vulnerability to drug abuse. Rats were treated with morphine in the presence or absence of yohimbine. The effects of the treatments on GFAP expression were studied by immunohistochemical staining in Locus Coeruleus (LC) and Nucleus of the Solitary Tract (NST), two important noradrenergic nuclei. In addition, drug effects on alpha(2)-adrenoceptor gene expression were determined by real time RT-PCR in the hippocampus, a brain area that receives noradrenergic input from the brainstem. Morphine administration increased GFAP expression both in LC and NST as it was previously reported in other brain areas. Yohimbine was found to efficiently prevent morphine-induced GFAP upregulation. Chronic (but not acute) morphine downregulated mRNA levels of alpha(2A)- and alpha(2C)-adrenoceptors in the hippocampus, while simultaneously increased the expression of the alpha(2B)-adrenoceptor gene. Again, yohimbine was able to prevent morphine-induced changes in the levels of expression of the three alpha(2)-adrenoceptor genes. These results correlate the well-established reduction of opioid dependence and addiction by yohimbine and suggest that this drug could interfere with the neural plasticity induced by chronic morphine in central noradrenergic pathways.


Assuntos
Tronco Encefálico/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/efeitos dos fármacos , Morfina/farmacologia , Receptores Adrenérgicos alfa 2/genética , Ioimbina/farmacologia , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Vias Autônomas/efeitos dos fármacos , Vias Autônomas/metabolismo , Biomarcadores/metabolismo , Tronco Encefálico/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Masculino , Morfina/antagonistas & inibidores , Dependência de Morfina/tratamento farmacológico , Dependência de Morfina/metabolismo , Entorpecentes/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/metabolismo , Regulação para Cima/efeitos dos fármacos
20.
Eur J Pharmacol ; 557(2-3): 147-50, 2007 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-17157293

RESUMO

Pleiotrophin and midkine are two recently discovered growth factors that promote survival and differentiation of catecholaminergic neurons. Chronic opioid stimulation has been reported to induce marked alterations of the locus coeruleus-hippocampus noradrenergic pathway, an effect that is prevented when opioids are coadministered with the alpha2-adrenoceptor antagonist yohimbine. The present work tries to examine a possible link between yohimbine reversal of morphine effects and pleiotrophin/midkine activation in the rat hippocampus by studying the levels of expression of pleiotrophin and midkine in response to acute and chronic administration of morphine, yohimbine and combinations of both drugs. Pleiotrophin gene expression was not altered by any treatment; however midkine mRNA levels were increased after chronic treatment with morphine. Chronic administration of yohimbine alone also increased midkine expression levels, whereas yohimbine and morphine administered together exhibited summatory effects on the upregulation of midkine expression levels. The data suggest that midkine could play a role in the prevention of opioid-induced neuroadaptations in hippocampus by yohimbine.


Assuntos
Analgésicos Opioides/farmacologia , Citocinas/metabolismo , Regulação da Expressão Gênica , Hipocampo/efeitos dos fármacos , Morfina/farmacologia , Ioimbina/farmacologia , Animais , Citocinas/genética , Hipocampo/metabolismo , Masculino , Midkina , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...